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Abstract
This paper is concerned with the study of the nonlinear Dirichlet parabolic problem
in a bounded subset Q@ C RV

ur 4+ Au+g(x, t,u, Vu) = f —div ¢ (u),

where A is an operator of Leray-Lions type acted from the parabolic anisotropic space
LP o, T; WOl "P(Q)) into its dual. g is a nonlinear term having a growth condition with
respect to Vu and satisfying a sign condition with no growth condition with respect to
u. In addition, when the initial condition u¢ and the data f are assumed to be merely
integrable and ¢ (-) € CO(IR, IRV), we prove the existence of entropy solutions for
this class of problems.
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612 M. Chrif et al.

1 Introduction

Let T > 0 and Q7 = 2 x (0,T) be a cylinder over the open bounded domain
Q c RY (N > 2). We denote by X7 the lateral surface 02 x (0, T).

Boccardo, Gallouét and Vazquez have studied in [6] the following nonlinear
parabolic equation

ur + Au+oaolul* " 'u = fin Qr,

u =0 on X7
u(x,0 =0 in ,
where ag > 0 and Au = —div (|Vu|P~>Vu) is the p-Laplacian operator with p >

1+ NL+1 When the data f is in L'(Q7) and s > W, the authors have
established the existence and regularity of solutions for such problems.

In [8], Boccardo, Dall’ Aglio, Gallouét and Orsina proved the existence result for
the nonlinear parabolic Cauchy-Dirichlet problem

th_AMZIJ/ in QT’
u =0 on X7,
u(x,0 =0 in ,

where Au = div a(x, t, u, Vu) is a classical divergence operator of Leray-Lions type
and pu belongs to M (Qr), the space of bounded Borel measures on Q7.

The case of isotropic elliptic and parabolic equations for which the principal part of
the operator behaves like the Leray-Lions operator, has been the subject of numerous
studies, we can cite, among others, the references [5,6,8,12,20], where the authors
obtained existence of solutions by considering lower order terms with quadratic growth
or subquadratic growth with respect to the gradient.

Regarding the anisotropic case, let us point out that anisotropic spaces involving
anisotropic exponent p = (p;)i=1,...N are the appropriate framework to deal with
a class of problems having non-standard structural conditions, one prototype of the
differential operator considered is the p—Laplacian

N
Apu) = 0 (10 ul P20 u),

i=1

which generalizes the p—Laplace operator. It is not a surprise that new difficulties
occur in the anisotropic spaces. To overcome these difficulties, we combine the classi-
cal techniques with recent ones that appeared when treating anisotropic problems, we
refer the reader to the papers [1,3,13,15-18] where existence results are obtained for
various types of nonlinear anisotropic elliptic and parabolic equations with respect to
the data.

Let us also mention that in recent years much attention has been given to the study
of anisotropic variable exponent Sobolev spaces and several studies have been devoted
to the investigation of related problems. This attention comes essentially from their
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On the study of strongly parabolic problems involving... 613

applications in the study of nonhomogeneous materials that behave differently on dif-
ferent space directions, we can refer here to the electrorheological and thermoelectric
fluids (see for example [2]).

The aim of this paper is to study the parabolic generalization of a class of nonlinear
elliptic problems considered earlier in both isotropic and anisotropic cases using a
compactness result. More precisely, we establish the existence of entropy solutions
for some strongly nonlinear anisotropic parabolic problem of the form

u+Au+g(x,t,u, Vu) = f —diveow) in  Qr,
ulx,t)=0 on X7, (1.1)
u(x,0) = ug(x) in €,

where uo € L' () and the right hand side is assumed to satisfy
feL(Qr) and ¢() = ($1(), ... ¢n () € CO(R, R").

The Leray-Lions operator A acted from Lﬁ(O, T; Wol"’3 (2)) into its dual Ll;/ o, T,
w—LP(Q)) (spaces as defined in Sect. 2) is given by

N
Au=—=>"Diai(x.t, Vu) +d(x, )ul"u,
i=l1

where d(x,t) is a positive function in L°°(Q7) such that there exists a constant
do > O with d(x,t) > dyp a.ein Qr, while (a;(x,t,£));=1,.. n are Carathéodory
functions (measurable with respect to (x, t) in Q7 forevery & in IRV, and continuous
with respect to £ in IRY for almost every (x,?) in Q7 ) satisfying

lai (x, 1, )] < BKi (v, ) + &7~ for i=1,....N (1.2)
aij(x,t,8& > alg|P for i=1,...,N. (1.3)

For a.e. (x,7) € Qr, forevery £, &’ € RN & £ &
(ai(x,t,é)—ai(x,t,E/))(éi—él-/)>0 for i=1,...,N. (1.4)

Here K;(x,t) isanonnegative function lying in LPE(QT) and «, 8 > 0.

As regards the strongly nonlinear perturbation lower-order term, we assume that
g(x, s, &) has no growth conditions with respect to u, and satisfies the following
classical sign condition and natural growth on Vi : g : © x (0, T) x IR x RN + IR
is a Carathéodory function, such that for a.e. (x, r) € Qr, all (s, &) € IR x RN

g(x,t,5,86).s 20, (1.5)
N

lg(x, 1,5, 6)| < b(Is]) (c(x, N+ |s,-|"f) : (1.6)
i=1
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614 M. Chrif et al.

where b(-) : IRT™ — IR™ is a continuous nondecreasing function, and c(-, -) :
Qx (0, T) — Rt with ¢(-,-) € L'(Q7).

Herein pg, p1, - -- , pn are N +1 real positive numbers such that < pi <00
foranyi =0,1,..., N.

This paper is organized as follows. In Sect. 2, we introduce some definitions and
results concerning anisotropic parabolic spaces. Section 3 contains some technical
lemmas needed to establish our main results. The last section will be devoted to prove

the existence of entropy solutions for our parabolic problem in the anisotropic spaces.

2 Parabolic anisotropic spaces

Let © be an open bounded domain in /RN (N > 2) with boundary 9<.

Let po, p1,..., py be N + 1 real constants numbers, with 1 < p; < oo for
i=0,1,...,N.
We denote by

p={po.p1.....pn}. p=min{p;, i =0,1,2,..., N} and

0 i du .
D'u=u, Du=—,i=1,...,N.
axi

We introduce the anisotropic Sobolev space
WhP(Q) ={u € LP(Q) and D'u € LPi(Q) for i=1,2,..., N},

under the norm
N .
lull.5 =Y 11D ullLri(g)- @.1)
i=0

We also define Wé P (€2) as the closure of Cgo (2) in wl.p (£2) with respect to the norm
(2.1), where C3°(£2) is the space of all continuous functions with compact support in
2, that have continuous derivatives for any order.

The dual of W(}’ﬁ(Q) is denoted by W_L’;,(Q), where p/ = {py. pls - P
Tty =Li=01... N, ie,

. N
VE ¢ W LP'(Q), there exists (fo» f1,---» fN) € HLPI(Q)
i=0

N
suchthat F = fo— Y D'fi.

i=1
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On the study of strongly parabolic problems involving... 615

It can be easily seen that Wl’ﬁ(Q) and Wg b (€2) are separable and reflexive
Banach spaces.
We will use later the following Sobolev embedding.

Lemma 2.1 Let Q be a bounded open set in IR . Then the following embeddings
are compact.

(i) If p < N, then Wé'ﬁ(Q) > LI1(Q) Vg € [p. E*[’ where # = %

1
L
(ii) If p=N, then WyP(Q) <> L9(Q) Vg € [p, +ool.

(iii) If p > N, then Wy (Q) <> L¥(€) N CO(Q).

The proof of this lemma follows from the fact that the embedding WO1 P (Q) —

1, . . . . .
W, 2 (£2) is continuous and from the compact embeddings theorem in classical Sobolev
spaces. For more details, we refer the reader to [10,22].

The anisotropic parabolic space L”(0, T; W7 ()) is given by the formula

_ - N oo
LPO,T; W-P(Q)) = {u measurable function / Z/o ||D’u||€i,,i @ dt < oo},
i=0

2.2)

endowed with the norm

N

lall 30,7 w5 = D ID“ullriop)-
i=0

We introduce the functional space Lﬁ(O, T, WO1 b (2)) by
p .wlp _ p . wl.p _
LPO,T; W, (Q))_{ueL O, T, WP(Q)) / u=00ndQ x [0, T]}. 2.3)

Lﬁ(O, T, Wl’ﬁ(Q)) and Lﬁ(O, T, Wé”;(Q)) are separable and reflexive Banach
spaces.

Definition 2.1 The dual space of Lﬁ(O, T; WOI’I;(Q)) is defined as follows

- - N
L7, T; WP (@) = {F =fo—y_ D'fi, with foeLP(Qr), fi € L"f(Qn}. 2.4

i=1
We define a norm on the dual space by

N N
R . . . , . — _ ip
"F”mo,r;wme))—mf{Z”ﬁ”m(QT) with F = fo—) D'f
i=0

i=1

such that fy € LP0(Q7) and f; € LPE(QT)}.
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616 M. Chrif et al.

The duality of the spaces Lﬁ(O, T; Wol’ﬁ(Q)) and L’;’(O, T; W_l”;'(SZ)) is given
by relation

T . -
/ (F,v)di = Z ﬁD’v dx forall ve LP(0,T; W,"(Q)).
0

Lemma 2.2 (cf. [21]) Let By, B and By be Banach spaces with By C B C Bj. Let
us set

Y={u:uelL®0,T;By) and u' € L7"(0,T; By)}

where qo > 1 and q1 > 1 are real numbers.
Assume that the embedding By — <> B is compact. Then the embedding

Y << L90,T; B)
is continuous and compact.

we set

2N
Remark 2.1 Let p > ,
= N+2

Bo=W,7(@), B=L*Q) and B =W "),

then W7 () € L2(2) € W7 (Q) and the embedding W7 () <> L2(Q)
is compact.
Weset go = p and g1 = min{p, p}, ..., ply}. Inview of Lemma 2.2, we obtain

u :ue Lﬁ(O, T; WI"B(Q)) and u' € L‘;/(O, T; Wﬁl";’(Q)) CY —>— L](QT).
0
2.5)

Moreover, in view of [4] we have

u:ue Lﬁ(O, T, Wl’ﬁ(Q)) and u' € L];’(O, T; W_l’p—/(Q)) Cc Cc(o,T1; LI(Q)).
0 =
(2.6)

For more details, we refer the reader to [19].

3 Some technical Lemmas
Definition 3.1 Let k > 0, the truncation function T;(-) : IR —— IR is defined as
s if |s| <k,
@) =12 it 15| > k.
Is|
@ Springer
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Lemma 3.1 (cf. [11], Theorem 13.47) Let (un), be a sequence in LI(Q) and u €

LI(Q) such that u, — u a.e. in 2, u,, u>0ae and | u, dx — udx, then
Q Q
u, — uin LY(Q).

Lemma3.2 Let u € LP(0, T; Wy (Q)) then Ti(u) € LP(0, T; Wy'? () for any
k > 0. Moreover, we have

Tew) — u in LPO,T; WoP(Q)  as k — oc.

Proposition 3.1 We introduce a time mollification of a functionu € Lﬁ(O, T; Wol’ﬁ(Q))
forall w>0 by

t
uy(x,t) = ,u/ u(x,s)exp(u(s —t))ds  where u(x,s) =u(x,s)xo,r)(s).

Then, the following assertions hold.

a
(i) If u e LP°(Qr), then u, ismeasurablein Qr, % = wu(u —uy) and

/qulpodxdtif |70 dx dt.
or or

(ii) If u € LP(0, T; Wy P (Q)), then u, — u in LP(0, T Wo'P (Q)) as 1 — +oo.
(iii) If up — u in Lﬁ(O, T; Wol’p(Q)), then (up), — uy in Lﬁ(O, T; Wol’p(Q)).
(iv) |(Tx(u))ul <k forall u e LP(0, T; Wol’p(Q)).

Proofs of Lemma 3.2 and Proposition 3.1 are similar to those in the classical space

LP(0, T; Wy" ().

Lemma 3.3 Assume (1.2)—(1.4) hold. Let (u,,), be a sequence in Lﬁ(O, T; Wol’ﬁ(Q))

d = = - n
such that 2 & LP' (0, T; WP (Q)), upy—u in LF(0,T: WP () and
N . .
Z/ (a; (x, t, Vin) — a;(x, 1, Vu))(D'u,, — D'u) dx dt
i=1Y0r 3.1
+/ <|Mn|p°72un — Iulp"*zu)(u,, —u)dx dt — 0,
or
then u, — u in Lﬁ(O, T, Wol”;(Q)) for a subsequence.
Proof Let
N
Dy(x.1) = ) (ai(x. 1, Vuy) = ai(x, 1, Vi) ) (D't — D'u)
i=1
@ Springer
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618 M. Chrif et al.

+(ltn P21 — ]P0 u) (un — w).

Thanks to (1.4) we have D,, is a positive function, and in view of (3.1), we get D,, — 0
in LY(Q7r) as n— oo.

On one hand, since u,—u in Lﬁ(O, T; W(}’p(Q)), and in view of the compact
embedding (2.5), we have u,, — u strongly in L%(Qr), sothat u, — u aein
O, and since D, — 0 a.ein Q7, there exists a subset B in Q7 with measure
zero such that for any (x,?) € Qr\B

lun(x, 1) < 00, |Diuy(x,1)] < o0, |K;(x,1)| < oo,
up(x,t) — u(x,t) and D,(x,t) — 0.

On the other hand, we have

N
Dy(x.1) =Y (ai(x.t, Vup) — a;(x.t, Vu))(D'u, — D'u)
i=1

+(lun P21 — P72 u) (un — u)

N
> o Z |D'uy,| Pt
i=1

N N
Ha Y D Ul A Jun P A )P — B (K (x, 1) + | D uy |1 | Dl

i=1 i=1

N
—B Y (K. t) + (D'l =)D | — || P07 ] = ]P0 g
i=1
N N
= a Y 1Dl = Cor Y (14 1D a4 D),
i=0 i=0

where @ = min(1, o) and Cy ; is a constant depending on (x, ¢), without dependence
on n. It follows that

N
i A c C C
Do, 1) 2 Y 1D g (@ = 2 - L ),
< [Diunl? 1Dl DTty

Bya standard argument (D’u,), is bounded almost everywhere in Q7, (Indeed, if
|D'u,| — oo in a measurable subset £ C Q7, then

N
lim . Dy (x, 1) dx dt > nlinéo;:
1=

; ) C () C
f|D’un|p’(g— NEELE N LI S ) dx dt = oo,
E | D' uy | Pi [ D' uyl |Dlun|p’_1
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On the study of strongly parabolic problems involving... 619

which is absurd since D,, — 0 in Ll(QT_) ).
Let £* be an accumulation point of (D'u,),, we have |§/| < co. By (3.1) and
the continuity of the Carathéodory function a(x, ¢, -), we obtain

(a,-(x, £E) —ai(x, 1, Vu))(él-* —Diu)=0.

Thanks to (1.4), we get &* = D'u, and the uniqueness of the accumulation point
implies that D'u, (x,t) — D'u(x,t) a.ein Q7 fori =0,1,--- , N.
Now since (a;(x,t, Vuy,)), is bounded in LP (Qr) and a;(x,t,Vu,) —
a;(x,t,Vu) a.ein Qr, one can establish that
ai(x, 1, Vup)—a;(x,1,Vu) in LPi(Qr).
Using (3.1) and Lemma 3.1, we deduce that
Junl? — |u” in L'(Qr), (3.2)
and
a;i (x,t, Vup)D'uy —> a;(x,t,Vu)D'u in L'(Q7). (3.3)
According to the condition (1.3), we have

a|D'up|? < aij(x,t,Vu,)D'u, for i=1,...,N.

a;(x,t,Vu,)D'u . ) i .
Let yi = il n) Dt and y' = W. In view of Fatou’s lemma, we
o

get

n—o0

4 . ) 1 . )
/ 2yt dx dr < liminf/ (y, + ' — — |D'u, — D'u|P') dx dt.
or or 2pi

Hence 0 < —lim sup/ IDiu,l - Diul”i dx dt, and since
or

n—o00

n—00 n— 00

0< liminf/ |D'u, — D'u|P dx dt < limsup/ |D'u, — D'u|P dx dt <0,
or or

it follows that / |D'u, — D'u|P! dx dt —> 0 as n — oo. Then we obtain
or

D'u, — D'u in LPI(Qr) for i=1,...,N.
Therefore, thanks to (3.2), we deduce that
U, —> u in L’;(O, T, W(}’I;(Q)).
&) Springer
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620 M. Chrif et al.

This completes our proof. O

4 Main results

Forall k > 0 and s € IR, we define

2

(Pk(’”)zfr Tk(s)ds:{ ; it |r| <k,
0

T
kirl =% if |r| > k.

Definition 4.1 A measurable function u is an entropy solution of the parabolic problem
(1.1)if

To) € LPO, T; WoP(Q)),  g(x,t,u, Vu) € L'(Qr),  [ul”2u e L'(Qr),

and

d
[ow-wma- [ gw-woar+ [ Wnu-yar
Q Q t

or

N
+ Z/ ai (x,t, Vu) D' T (u — ¥) dx dt +/ glx,t,u, V)T (u — ) dx dt
i=170r

Oor

+/ d(x, DH)ulP"%u Te(u — ) dx dt

0

! N

5[ FTe(u — V) dx dr+2/ ¢i(u) D' Ty (u — ) dx dt, 4.1)
or i=1 Or

= D 3 ) o1
forall Y € LP(0,T; Wy”(R) N L™®(Qr) with a%ﬁ e LY, T; W' (Q))

+LY(Qp).

Theorem 4.1  Assume (1.2)—(1.6) hold, with f € L'(Qr), ug € L'(Qr) and
() € COUR, RN). Then the problem (1.1) has at least one entropy solution.

Proof.

Step 1: Approximate problem. Let ( f;,),, be asequence in LY O, T; W’l’p/(Q))ﬂ
L'(Qr) suchthat f, — f in L'(Qr) with |f,| < |f|, and let (ug,), be a
sequence in CgO(Q) such that ug, — up in LY(Q) and [uo.n| < |up|. Consider the
approximate problem

Wn) + Auy + gn(x, t, uy, Vuy) = fr — div ¢, (u,) in QOr,
u,(x,t) =0 on Xr, “4.2)
I/ln(.x, 0) = MO,n in Q,

@ Springer
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On the study of strongly parabolic problems involving... 621

where ¢, (s) = (@1.n(5), ..., dN.n(s)) With ¢; n(s) = ¢i(Tu(s)), i =1,..., N, and
the nonlinear term g, (x,1,s,&) = T,(g(x,t, s, &)). Note that

gn(x,1,5,8)s >0, lgn(x. 2,5, 8)| < |g(x,1,5,8)| and
lgn(x,t,5,6)| <n Vne N

We define the operator G, : LF’(O, T; Wé’ﬁ(Q)) — Ll;’(O, T, W_l’f;’(Q)) by

T
/ (Gnu,v)dt:/ gn(x,t,u, Vu)vdx dt
0 or

N
—Zf $in)D'vdxdi  VveLP0,T; Wy ().

Thanks to Holder’s inequality, we have

r 1
[ Gy ar] < (- + />||gn<m Vil o Il con,

Po Py
N

i , D! ‘
; pi |¢"( s Ll

1
(n meas(01)% + Z Sup [ (£)| meas( @) )1Vl 5 7.1 7 )

llsln

Pi(Qr) (4.3)

Collvll 5 0,7 w7 )

forall u, ve LP(0, T; WyP ().
In view of Lemma 5.1 (see Appendix), the operator B, = A + G, is bounded,
pseudo-monotone and coercive. Usmg (2.6), we conclude that there exists at least one

weak solution u, € LP(O T, W0 p(Q)) of problem (4.2) (cf. [14]).
Step 2: Weak convergence of truncations. Let k¥ > 1. By taking Ty (u,) as a test
function in (4.2), we obtain

T P N )
/ (=2 Tk<un)>dt+2/ ai(x.1, Vity) D' Ti(uy) dx di
0 i=1 or

+ / A, 1)t |21y Ty () dx d
or

4 [ gt V) Tiun) i
or
N .
= fiTx@y)dxdr+y / Gin(n) D' Ty(uy) dx dr.  (4.4)
Oor i—1 Y Or
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622 M. Chrif et al.

.
We have ¢ (r) = / Ty (s) ds and since |@r(r)| < k|r|, then
0

T Bun r aun r 8(pk(un)
—, T dt = T dt dx = dt d
/0 (5 Ti) di /Q/O ) i dx /Q/O ) ar dx

:f o (U, (T)) dx-f @ (uo,n) dx
Q Q

> /Q 0 un(TY) dx — Kllull 1 - @5)

For the second and third terms on the left-hand side of (4.4), we have

/ a;(x,t,Vuy) DiTk(un) dx dt > oz/ |DiTk(un)|1’1 dx dt 4.6)
or 0

T

and

f d(x, D) |un P 2uy T (uy) dx dt > d()/ | Ty () |70 dx dt. 4.7
or

or

Having in mind the sign condition, the fourth term on the left-hand side of (4.4) is
positive. Concerning the two terms on the right-hand side of (4.4),we have

Fo Te(un) dx d skf ful dx dt <K fllL1cgp- @8)

or or

N
Taking ®; ,(s) :/ ¢in(o)do, then ®; ,(0) =0 and P; ,(-) € C'(R), and in
0
view of Green formula, we obtain

®in (”n)DiTk(Mn) dx dt

or
T

- f f Dy (Tic () dx dt
0 Q

=/ / ®; Ty (un))ni do di = 0, (4.9)
0 Q2

since u, =0 on 9Q x (0, T), where i1 = (n1,na,...,ny) is the exterior normal
vector on the boundary 92 x (0, T').
By combining (4.4)—(4.9), we deduce that

N
/q)k(un(T)) dx+a2/ | D' Ty () |7 dx di
Q i=1 or

+d0/Q | Tic )| dx dt < k(luollioy + 1 fllicopy)-  (410)
T
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Content courtesy of Springer Nature, terms of use apply. Rights reserved.



On the study of strongly parabolic problems involving... 623

Since ¢ (u,(T)) > 0, then there exists a constant C, that does not depend on n
and k, such that

N

i p p
DD T n gy + 1Tk @) Lo o)
i=1

N

SZ/ |D"Tk(u,,)|l’idxdt+/ |Tie(un)|P° dx dt + N + 1
i1 v 0r
i=1

or
< kCj.

Thus, we get

==

Tk Gundl 5 o, 7, w17 ) = C3KE (4.11)

Let kK > 1, we have

k meas{lun| > k}
= [ inGlavars [ midra
{lun]>k} or

1
= meas(Qr) " | Tiwn)ll 5, T;Wo (@)

==

< Cy4k

bl

which implies that

1
meas{|u,,| > k} < Cy = —> 0 as k — +oo. (4.12)

ko

For all A > 0, we have

meas{lun — Upy| > k} < meas{|un| > k} +rneas{|um| > k}
+meas{| Tk (un) — Ti(um)| > A}. (4.13)

On one hand, using (4.12), we get for all ¢ > 0, there exists kg > 0 such that

meas{lunl > k} < and meas{lum| > k} < Vk > ko(e). (4.14)

W[ ™
(SSRGS

On the other hand, in view of (4.11), (T (u,)), is bounded in Lﬁ(O, T; W(}”;(Q)).
Then there exists a sequence still denoted by (7x(u,)), such that

Ti(uy)—nx in Lﬁ(O, T, Wé’ﬁ(Q)) as n — 4oo,
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and by the compact embedding (2.5), we obtain
Ty (y) —> nx  in LI(QT) and aein Qr.

Thus, we can assume that (7 (u,)), is a Cauchy sequence in measure in Q7. Hence
forall k > 0 and A, & > O there exists ng = ng(k, A, &) such that

meas{| Ty (un) — Ti(um)| > 1} < Yn, m > ny. (4.15)

W] ™

By combining (4.13)—(4.15), we deduce thatforall ¢, A > 0, there existsng = ng(X, €)
such that

meas{|u, —uy| > A} <e Vn,m > ng. (4.16)

If follows that (u;), is a Cauchy sequence in measure. So that there exists a subse-
quence still denoted (u,), such that

u, — u aein Qr.
Hence we have
Te(un)—=Ti(u) in LP(0,T; W7 (). (4.17)
Applying Lebesgue dominated convergence theorem, we get
Ti(un) —> Ti(u) in LP(Qr). (4.18)

Step 3: A priori estimates. Let 7 > 0, taking Tj,4+1(u,) — T, (u,) as a test function
in (4.2), we obtain

T du,
/ ( a7’ Tht1(un) — Th(un)) dt
0 t

' ﬁ; -/Qr ai (x. 1, V) (D' Tyy1 (un) — D' Ty (uy)) dx di
Jr/Q gn(x, 1, un, Vin)(Tpt1 (un) — T (un)) dx dt
r
Tt o
- /QT o+ (D1 (un) = Ty (up)) dx di

N
£y fQ Gin ) - (D' Ty ) — D' Ty(uy)) dx dir,
i=1 T
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We have

T du,
/ (= Thp1(up) — Tn(up)) d

/ / a¢h+1<un> Ui da / /T O (un)

=/Qwhﬂ(un(T))—<ph+1(uo,n)dx—/9<ﬂh(un(T))—wh(uo,n)dx

with

f¢h+1(un(T)) dx—/ @n(un(T)) dx
Q Q

uz(T) h?
(—— = hlu,(T)| + —) dx
{h<lun(T)|<h+1) 2 2

1
+/ (lun(T)| —h — =) dx > 0. (4.19)
(h+1<|u, (T)|} 2

Similarly to (4.9), we have

. Gi () (D' Ty () — D Ty (uy)) dx dt

=/Q Gin (Tia1 () D' Ty 1 () dx dt
- [ Gin(Th (un)) D' Ty (uy) dx dt
or

= | D'®;,(Thy1(uy)) dx dt
or

— D' ®; (T, (u,)) dx dt = 0. (4.20)
or

Now since Tj41(u,) — Tj (1) has the same sign as u, and |Tj41(up) — Tp(up)| < 1,
we get

aZ/ |D'u,|Pi dx a’t+d0/ lun|P0~" dx dt

h<|u,,|<h+1} {h+1<|un|} 4.21)

< ] |fldx dt + / Ph1(Uo,n) dx — f @n(uo,n) dx.
{lun|=h} Q Q
Concerning the terms on the right-hand side of (4.21), we have

/ |fldxdt — 0 as h — oo, (4.22)
{Jttn|=h}
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and since ug, — up in LI(Q), then

/(ﬂh+1(uo,n)dx—/ on(uo,n) dx
Q Q

|, |? h?
=[ A0nl g + 1) dx
{h<luon|<h+1} 2 2

1
+/ (luonl —h — z)dx
{h+1 <l 41} 2

1
< / —dx
{h<luo,l<h+1} 2

-I-/ lugl dx — 0 as h — oo. (4.23)
{h+1=<uo.nl}

By combining (4.21)—(4.23), we deduce that

N

/ |Diuy|P dxdt — 0 as h — oo, (4.24)
= Jih<tunl<n+1)

and

f lup|PVdx di — 0 as h — oc. (4.25)
(1<}

Step 4: Convergence of the gradient. In the sequel, we denote by ¢; (n), i =1, 2, ...
various functions of real numbers which converges to 0 as n tends to infinity
(respectively for ¢; (n, 1) and g; (n, u, h)).

Let &(s) = s.exp(ysz) where y = (%)2 It is obvious that

b(k)

§i(9) — —1& ()] = Vs € IR.

1
2
Let wy, ;. = Tk (up) — (Tx(w)),, where (T (u)), is the mollification, with respect to
time, of Ty (u).

Leth > k > 0, taking S, (-) € CZ(IR) an increasing function, such that S, (r) =r
for |r| < handsupp(S;) C [~h—1, h+1], thensupp(S;) C [-h—1, —h]U[h, h+1].

Since Tj(un) — (T (1)), have the same sign as u,, on the set {|u,| > k}, then, by
using & (wy, ) S}, (u,) as atest function in (4.2), we obtain

1 2 3 4 5 6 7 8
jn,u,h + jn,u,h + jn,u,h + jn,u,h + jn,u,h = jn,u,h + jn,u,h + jn,u,h’ (4.26)
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where
T u
1 _ n /
L711,;;,}1 = [(\), (?vék(wn,u)sh(un» dt,
Teun =2 /Q Sy (un)ai (x, t, Viuy) (D T (un) — D' (Ti (1)) )&} (@n, ) dx dt,
i=17€r

N
T3n=2_ /Q £ (@n ) Sy (Un)a; (x. 1, Viug) D'uy dx dt,
i=1 T

\7,14’%;, = / gn(x, 1, uy, Vun)&r(wy, ) dx dt,
{lunl<k}

4.27)
TR un= d(x, )|un " unéi(on,) dx dt,
[y | <k}

jn6,u,‘h = / fnS]/f[ (ul’l)ék(wn,lt) d-x dt7

AQT
jVZM»h = Z /QT Sy, )i n (n) (D' Ty (up) — D' (T (1)) )&} (@n, ) dx dit,

l;l |
jns’u,h = Z‘/QT ¢i,n(un)DlunS;{(Mn)gk(wn,u) dx dt.

i=1
The first term: We have

S, (uy
jnl,u,h = 0 %&((Tk(un) - (Tk(u))p,) dx dt
" (Sh(un) — Tic(utn
= / M&(mm — (Te()),0) dx di
or t
0Tk (up
+ f %&(Tk(un) — (Ti)),) dx dr
T T
= Z (S Gtn) = TeGen) (Thttn) = (Tiu))) x|, (4-28)
/ 0T (),
- /Q (St0) = Tlun )8 Teun) (T, (=52 = =22 ) d di

0Ty (uy
+ f “3(” ) 6 (T — (T (0)),0) dx di
or t

=L+ DL+ 1.

Concerning the first term on the right hand side of (4.28), we have Sy, (u,) = Ty (u,) =
u, on {|u,| <k}, and |Sy(u,)| > |Tx(u,)| on the set {|u,| > k}. Since Sy (u,)
and Ty (u,) have the same sign of u,, we obtain

T
I = [/ (Sh(un) — T (un))Ex (T (un) — (T () 0) dx]
{uen|>F) 0
= _/{l | k}(Sh(uo,n) — Tic(0,n)) &k (Tic(0,n) — (Tic(u0)),.) dx.
uo,n|>

Since (Ti(ug))y = Tk (up), we deduce that IT > g1(n), with
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er(n) = _/{l | k}(Sh(”O,n) — Ty (u0,n))k(Tk (uo,n) — Ti(uo)) dx —>
Mo,n >

0 asn — oo.
For the second term on the right-hand side of (4.28), we have (S,(u,) —
Ty 1)) L)
at

= 0. Hence

o (T;
L= f{ S T ) ~ (Tk(um)% dx di

=pn ok (Sn(n) — Te ))& (T () — (Ti)) ) (Te () — (T () ,0) dx di
- /{Iun>k}(Sh(un) — Ti))E T 1) — (Ti0)),) (Tiw) — Tiun)) dix

o {|un|>k}(sh (n) = Tie(un)& (Ti () — (T )) (T () — (T () ) dx dt
> W {Iun\>k}(Sh(u”) — T )& (T () — (T () ) (T () — Tic () dix d.

It follows that I > &>(n).
1
Concerning the last term I3, let W(s) = 2—exp(ys2), then W'(s) = & (s), and
14

we obtain

0 (T (un) — (T,
I3 ZfQ S k(u))“)%'k(Tk(un) — (T (w)),.) dx dt

dt

o(T
+ / %&(nw (T, dx di

or t

T

= [ [ it ~ @, as]

Q 0
T~ (T8 Ty ) — T e
> /Q W(Te(uo ) — Te(uo)) dx
0~ (T 06 Ty ) — Ty e d
> g3(n)
tu [ T = (T, )& T ) — (T ), dx di

or
> e3(n).

Combining these last estimates, we conclude that

T = ealn), (4.29)
with e4(n) = e1(n) + e2(n) + e3(n).
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The second term: We have S} (s) > 0 and S} (s) = 1 for |s| < k, with supp(S}) C
[=h — 1, h + 1], then

N
Tiun=_ /{ . (x, 1, Vi) (D' Ti(un) — D' (T () )& (@n. 1) dx dt
i=1 Un|=

N
= / Sy (un)ai (v, 1, Vg1 () D (T () i) (@n) dox dt
=7 Jk<lun|<h+1}

(ai (6. 1, VT ()

—ai (¥, 1, VTe(w)) ) (D' Ticutn) = D' T (@n, ) dx d

N
— (k) ZfQ la; (x, 1, VTe@))| |D' Tic(un) — D' Ty ()| dx di
i=1 T

N
—E§0 Y f{ Jai (. £, V)| 1D (Tic(w)) | dx dt
i=1

|un|>k}

N
— QY / lai (x, 1, VTi(ua)| 1D Ti(u) — D' (Ti () | dx di
i=170r
— & QKIS Lo ()
N .
Z/ la; (x, t, VThy1@n) || D' (T () | dx dt. (4.30)
i1 {k<|uy|<h+1}
Since a; (x, ¢, VTi(u)) is boundedin L”i (Q7), and D' Ty (u,)— D! Ty (u) in LP (O7),
we get

/ la; (x, 1, VT ()| | D' Ty (up) — D' Te(u)| dx dt —> 0 as n — oo. (4.31)
or

For the three last terms on the right-hand side of (4.30), we have |a; (x, ¢, VT (uy))] is
boundedin L?i (Qr), thenthere exists ¥; € LPi (Qr) suchthat|a; (x, 1, VT (un))| =9
weakly in L? (Qr), and since D'(Ty(u)), — D'Ti(u) in LP (Q7), it follows that

/ la; (x, 1, VT (up))| | D (Tk ()| dx dt —> / O ID'Ty(u)| dx dt =0 as u, n — oo.
{lunl >k} {lul>k}

(4.32)

Similarly, we can prove that

f lai (x, 1, VT (un))| |D Ty (u) — D' (Ti ()| dx dt —> Oas w and n — oo,
or

(4.33)
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and

/ lai (x, t, VT (uy))l |Di(Tk(u)),4| dxdt — Oas p and n — oo.
{k<|un|<h+1}

(4.34)
By combining (4.30)—(4.34), we deduce that
jnz,p,,h
N .
=3 / (e, VTitwn)) = a5, 1, VT 0) ) (D Teutn)
i=1Y9r
—D'Ty ()&} (wn, ) dx dt + es(i, n). (4.35)

The third term: We have supp(S,/l’) C[—=h—1,—h]U[h,h + 1], and in view of
Young’s inequality, we obtain

|73l < ||Sh||m<m>2 /h ey 11 VT @) 160,01 1D Th )] i di
<|u,

< BISH L= m) Z / (Ki (x, 1) + D Tt )P~ &k (@n )1 1D Thr ()] dx dt
{h<|u,|<h+1}

|Ki(x, )|
< BIS} I~ Z / 61 0| P
i

{h<|up|<h+1}

1 i .
+B1E2I)] 115} L (m) Z / (— + DID Tyy1 (un)|”" dx dt.
(h<|uy|<h+1} Pi

Since wy ,, = Ty (un) — (T (1)), —0 weak-«in L°°(Q7), then
M I

Ki(x, 0)|7
/ 1€k (@n )] M dxdt — 0 as u,n — o0,
{h<lun|<h+1} p;
Thanks to (4.24), we obtain
1 ‘ |
/ (— 4+ DID' Ty (up)|P dx dt — 0 as h — oo.
{h<lun|<h+1} Pi
It follows that
T3 un—>0 as . n thenh — oo. (4.36)
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The fourth term: Using (1.3) and (1.6), we have

KA 5/{ 8001 T, VT ) om0 e di
Up|=<

N

= b(k) /l | k}(c(x,t)+Z|DiTk(“n)|pi)|Ek(wn,u)|dx dt

i=1

< bik) / c(x, 1)[Ex (@np0)] dix di
|un|<k}

b(k)
+—= (ai(x,t, VT (y))
o ; or ‘
—a;(x, 1, VTk(u»)(Dka(un) — D' T () |E(@p, )| dx dt

b(k) Z f ai (x, £, VT @) (D' Ty (un) — D' T (w) &k (@n,)| dx di

b(k) Zf ai (x, 1, VT (up)) D' T (u) |&k (wn, )| dx dt. (4.37)
We also have & (Ti(u,) — (T (1)) )—0 weak-x in L°°(Qr). This implies that

/ c(x,)éx(wn,)dxdt — 0 as  n, u — oo. (4.38)
{lun| <k}

Concerning the third and last terms on the right-hand side of (4.37), we have
| /Q a; (x, 1, VI @) (D' Tic(tn) — D' Te(u)) |ék (@n, )| dx dt
T

< £(2k) lai (x, 1, VI )| |D Tk (un) — D' T (w)| dx dt — 0 as n — oo,
or

(4.39)

and

/ a;j(x,t, VT (uy)) D! Ty (u) &g (wn, )| dx dt —> 0 as nand u — oo. (4.40)
or

Having in mind (4.37)—(4.40), we conclude that

bk
Tt n] < ()Z/ (@i (x, 1, VTi(un))

—a; _(x, t, VT () (D' Ty (un)
—D' Ty () &k (wn, )| dx dt
+e6(n, ). 4.41)
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The fifth term: We have

Tk = f{ ek d (e, )| T ()P 7> T () (Tr () — (T () ) exp(yw}, ) dx dt

> do /Q (1Tice ™ Tican) = T ()17~ 0) ) (T )
—Ti(w) exp(y ey ,) dx dt

+ f d e, DT @I Tew) (T 1) — Tew)) exp(y? ) dix de
or
+.[\ - d (e, 0| T () 1P~ T (1) (Ti (u) — (Tk(u))u)exp(yw,%,u) dx dt

_/” - d (x, ) Te () |P 2 T (1) (T () — Tie(w)) exp(y ey, ) dx dt.

Since Ty (u,) — T (u) — 0 and Ty (u) — (Tx(u)),, — O strongly in LP°(Q7r), then
the three last terms on the right-hand side tends to 0, and we obtain

T30 = do / (T ) P02 Ti () — 1T ()|~ Ty 1)

or

(Tr (up) — T (w)) dx dt + e7(n, ). (4.42)

The sixth term:
We have f, — f in L'(Q7), and since &(wn, ;) —0 weak-xin L°°(Qr), then

| T2 nl < IIS;/,IILOO(IR)/Q [ful & (TkCun) — (Te)) )| dx dt — 0 as n, . — 0.
;

(4.43)

The seventh and last terms: Let n be large enough, it’s clear that ¢; ,, (741 (1)) =

& (Tps1(tn)) = ¢i(Thy1 () in LPi(Q7), and since D' Ty (u,) — D (Tye(u)) ,—0
in LP(Qr), we conclude that

N
7l <3|
i=l

— D' (Ti(u)) ) S}, (Un)E] (wn ) dx dt

b1 (Th1 () (D' Tic ()
ltp|<h+1}

N
=S AN /{ 161 (Th41 @) | D Ti ()
i=1

lun|<h+1}

—D'(Tx(w)),| dx dt — 0, (4.44)

as n and p tend to infinity. Concerning the last term, in view of Young’s inequality
and (4.24), we obtain
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N
AED / G (T () Dt S 1t )& (@ ) dlx d
= n<iwni<ny

N
< ISy heoeemy Y / 16i.n (Tt 1 @)1 D ||k (0 )| dx dit
i21 Jh<lun|<h+1)

N ’
@i (Tht1 (n))| i
< ||s;;||Loc<zR>Z/{ b Th e G e (o g0l dx d
i=1

/
h<|u,|<h+1} Pi

al | Dy |Pi
WNCIATT DS /{ Dl i o
i=1

h<|up|<h+1} Pi
as n, wuthen h — oo. (4.45)

Combining (4.29), (4.35), (4.36) and (4.41)—(4.45), we deduce that

(a0 e 1, VTu)) = @ Cx ., VT ) (D Tetn)

. b(k
D) (50 — 6o, ) e di

+do | (k)P Ti ()

or
—| The () [P~ T () (Ty () — T (w)) dx dt
< eg(n, u, h).

By letting n, # and /4 tend to infinity, we get

N
lim Z/ (ai(x, t, VTi(up)) —ai(x,t, VTk(u)))(Di Ty (uy) — D' Ty (u)) dx dt
i=1 or

n—0o0 “

+ do/ Tk @) 1P T ) = | Te@) |0 Tr () (Ti () — Tr () dx dt = 0.

or

In view of Lemma 3.3, we obtain

Ty (uy) —> Ti(u) in LP(0, T; W(}'ﬁ(sz)) and D'u, —> D'u aein Q7.
(4.46)

Step 5 : The equi-integrability of (g, (x, 7, u,, Vip))n and (Jun|P02u,),. We
prove that

gn(-xataul’hvul’l)_)g('x7t’u5vu) and
|tn )P0 2u, —> |u|P°"%u stronglyin L'(Qr).
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Using Vitali’s theorem, it suffices to prove that the sequences (g, (x,t, u,, Vuy)),
and (|u,|”~2u,), are uniformly equi-integrable. Indeed, taking Tj,o1 (,) — Tj (i)
as a test function in (4.2), we have

don1(un)  dgn(un) - '
f orsi () dgn(un) +Z/ a;(x. t, Viy) D'uy dx dt
oy Ot ot iz1 Y h=lunl<h+1)

+/ en(x,t, up, Vuy)(Thy1(uy) — T (un)) dx dt
{h<|unl}
+/ d(x, )|un) "2y (Thy1 n) — T (un)) dx dt
{h<|u,|}
= / Jn o (Th1(uy) — Tp(uy)) dx dt
{h=<lunl}
N . .
+3 /Q $i.n(un) (D Tyt (un) — D' Ty () dx dt. (4.47)
=17 LT
We also have

/ 0@n+1(uy) _ don (un)
or ot ot

dt dx :/ On+1 (W (T)) dx—/ Qnt1(uo,n) dx
Q Q

—/ @n(un(T)) dx+/ on(ug.p) dx.
Q Q

Now by (4.19), we get

3 u depn (u
/ Pui1(n) _ donCun) > _/ Oni1o.n) dx+/ @n(uo,n) dx.
Or ot o1 “ ’

Using (1.3) and (4.20), we obtain

/ \n e 1, e, V)| dix di +d0/ ]P0 dx di
{h+1<]u,|} {h+1<|u, |}

< gn(x, t, un, Vi) (Thy1 (uy) — Ti(uy)) dx dt
{h=lunl} (4.48)
+ d(x, Oun P2ty (Thg1 (un) — T (un)) dx dt
{hf‘un‘}

< / \f1dx di + / o1 (o) dx — / on(tto.n) dx.
{h<|un|} Q Q

Hence, on one hand, in view of (4.22)—(4.23), we deduce that for all n > 0, there
exists i(n) > 0 such that

/ 2w (X, 1, thn, Vitn)| dx dt + do/ lun |V dx dit < L. (4.49)
{h(m)<un) {h()<lun ) 2
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On the other hand, for any measurable subset £ C Qr, we have

/|gn(x,t,u,,,Vun)|dxdt+do/ lun |0~ dx dt
E E

N
< b(h(n) /E (cCe 1) + Y 1D Ty () |7) dx d

i=1
+do/ |Th(n)(un)|p0_1 dx dt
E
+/ |gn(-xst1 Up, Vun)|d.xdt
{h(n) <|un|}

+do / lun |0~ dx dr. (4.50)
{h(m)<lun}

Thanks to (4.46), there exists S(n) > 0 such that

N
b(h(n) / (G, 1) + Y D Ty ) |P) dox dit + do / | Ty @) |70~ dx d
E P E

=

=

for meas(E) < B(n). 4.51)

Finally, by combining (4.49),(4.50) and (4.51), we obtain
/ lgn(x, 1, up, Vuy)| dx dt +d0/ lun|P°~ dx dt <,
E E
with meas(E) < B(n), (4.52)

which implies that (g, (x, ¢, u,, Vuy)), and (|un|”0_2un)n are uniformly equi-
integrable. Then, in view of Vitali’s theorem, we deduce that

8n (X, 1ty Vitg) —> g(x, t,u, Vu) and  |uy [P0 2u, —> [u|?2u in L'(Qr).

(4.53)

Step 6 : The convergence of u, in C([0,T]: L'(Q)). Let m and n be two
integers, then u, and u, verifies

T du, - :
/ ( “"_ﬂ,¢>dt+2/ (as (x, 1, Vitn) = ai (x, 1, V) D'y dix d
0 ot ot iz Jor

+/ (gn(X,t, Un, Vitn) — gm (X, 1, Um, vum))wdx dt
T

+ | d O (a2, — Jum P 2u )y dx dt
or

N
= /Q o= fW drxdi+ /Q (B1.0ttn) — i tn)) D' i,
T i=1 T
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forall ¥ € Lﬁ(O, T; W()l’ﬁ(Q)) N L*°(Qr). By taking ¥ = Ty (up — um) - X057 for
0 <s <T, we obtain

/ /S a(pl(un_”m) dt d
QJo ot
N s )
+Zf f (@i (x, 1, Vity) — a;(x, 1, Vit)) D' Ty (uy — ) dx dt
i=170 /&

s
—i—/o / (gn(x, toun, Vi) — gu(x, t, iy, Vum))Tl(un —Uy) dxdt
Q
N
[ e 0™ = P20 T = ) v
0 JQ

= /s / (fn — f)T1(up — up) dx dt
0 Q

N
+ Z/ (¢tn(”n) - ¢i,m(”m)) D' Ty (up — um) dx dt. (4.54)
i—1 v Or

Note that we have
d (u — )
f f SO 7 ) g dx = / @1 (tn(5) — i (5)) dx — / @1 (o — to,m) dx.
Q Q

Cor'lcerning.the terms on the left-hand side of (4.54), it’s clear that D' T} (u,, — ) =
(D'up — D'up) . X{jup—un|<1;- Then

N S
Z/ / (a,-(x, 1. Viy) — a;(x. 1, Vum))D’Tl(un — ) dxdt > 0. (4.55)
N 0 Q

In view of (4.53), we get

S
0 < / / e ) (a7t~ a0 ) Ty 1y — ) dix i
0 Q

un |0 %u, — |um|P072um‘ dx dt — 0,

< NdOllz=cor)

Or
and
S
‘/- / (gn(x, 1, upn, Viy) — gm(x, t, tpm, V)T (uy — up) dx dt
0.JQ
S |gn(x7t7“nvvun)_gm(X,tvum,vum)ldx dt—)ov
or
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as n and m tend to infinity. For the terms on the right-hand side of (4.54), we have

‘/S/(fn_fm)'Tl(un — Upy) dx dt
0 JQ

</ | fo — fuldxdt — 0 as n,m — oo.
or

Also, we prove that (see Appendix)
N .
Z/ (d’i,n(un) - ¢i,m(um)) D' T\(up —up)dxdt — 0 as n,m — oo.
i=170r

Now since ¢ (uo,, — uo,m) — 0 in LI(Q), then
/ ©1(Un(s) —upm(s))dx — 0 as n,m — oo. (4.56)
Q
We also have
/ i (5) — um ()[* dx +f i () — um(s)| dx
{lup—um| <1} {lun—1m|>1}
<2 / @1 (un(s) — um(s)) dx, (4.57)
Q
and
/mn(s)—um(sndx:f en (5) — i (5)] dix
Q {lun*um‘fl}
+/ ltn () — um(s)| dx
{‘Mn_“m|>l}
1
=( Jun(5) — i (5) P ) - (meas(2)’
{lup—um|<1}
+/ [t () — up(s)| dx. (4.58)
{lup—um|>1}
Hence in view of (4.56)—(4.58), we deduce that

/ lun(s) — upm(s)|dx — 0 as m,n — oo. (4.59)
Q

Thus (u,), is a Cauchy sequence in C([0, T]; LY(2)). Therefore u,, converges to
u e C([0,T]; L'(Q)) and we have u,(s) — u(s) in L'(RQ) forany 0 <5 <T.
Step 7 : Passage to the limit. Let i € Lﬁ(O, T; Wg’p(Q)) N L®°(Qr) with

8 ﬂ/ "/
8—Itp eL?(0,T, w-Lp () + LI(QT), and M =k + [[¥|lL~os) with £ > 0.
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Choose Ty (u, — ) as atest function in (4.2), we obtain

T du, N ;
(5 Telun =) de+ 3 | aiCx,t, V) D Ti(un — ) dox dt
0 i=1 or
+/ gn(x, 1, un, Vup) Ti(up — ¥) dx dt
or

+ / A, 1)t |2 Tt — ) dix di
or

N
= fnTk(un —¥)dx dt+Z/ ¢zn(“n) DiTk(un — ) dxdt.
or i=1 or

(4.60)

If lup| > M, then |up — Y| = |unl — [[¥lloc > k. Therefore {Ju, — ¢| < k} <
{lun| < M}, which implies that

N
Z/ ai (x, 1, Vuy) D' Ty (u, — v) dx dt
i=1

ai (x, 1, VT (un) (D' Tar(un) — D'yr) dx dt

Il
I Mzu Mz

(ai(x, 1, VTy(un)) — ai(x, t, V) (D' Tag (uy) — D'r) dx dt

/Iun ¥ |<k}

—¥l=<k}

+ / ai(x, 1, V) (D Ty (up) — D) dx di.
{lun—w<k}

H'Mz

On one hand, since DTy (u,) — D Ty (u) in LPi(Q7), and in view of Fatou’s
lemma, we obtain

N
limian/ ai (x, 1, Vuy) D' Ty (u, — ) dx dt
or

n——+0o00 4
1=

N
>y / (ai(x, 1, VTy W) — a; (x, 1, V) (D' Ty (u) — D'Y) dx di
u—| <k}

N
+ Z/ ai(x, t, V) (D' Ty () — D) dx dt
{u—v| <k}

i=

N
= Z/ ai(x,t, Vu) D' Te(u — ) dx dt. (4.61)
i=17Y9r
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On the other hand, for the first term on the left-hand side of (4.60), we have

T u
/0((,% Ti(u, — ) dt

3 (up L
=/ ( (“8 ¥) Tk<un—w>>dr+/ & T — ) d
0 t o Ot

= / @ (un(T) — Y (T)) dx — /ka(uo,n —¥(0)) dx

/ —Tk(un V) dx dt.
or

Now since u,, — u in C([0, T1; L'()), then u,(T) — u(T) in L' (). It follows
that

/Q ok (tton — Y(0) dx —> /Q oo — ¥(0)) dx and

/ka(un(T) —v(T)dx — /ka(u(T) —y(T))dx, (4.62)

a _>/ ﬁ/
as n tends to infinity. Note that we have a—zﬁ e L”0,T; w7 (@) + LY(Qr),

and since Ty (u, —)—Tr(u — ) in Li’(O, T; Wg”;(Q)) and weak—x in L*°(Q7),
then

/ —Tk(un ¥)dx dt — %Tk(u —¥) dx dt, (4.63)
or or ot

and

fuTi(uy — ¥) dx dt — fTi(u — ) dxdt. (4.64)
or or

Thanks to (4.53), we deduce that

/ d(x, )|un P 2un Ty — W) dx dt
or

— d(x, D)ulP?"%u T (u — ) dx dt, (4.65)
or

and
/ en(x,t,up, Vuy)Ti(uy — ) dx dt
or

— glx, t,u, Vi)Tp(u — ) dx dt. (4.66)
or
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Since ¢; ,(Tp(uy)) = ¢i(Tar(uy)) for n large enough (n > M), then

lim Gin () D T (u, — V) dx dt

n—oo QT

lim & (Tog ) (D' Tag (uy) — D) dx dt

=00 Juy—y| <k}

/ &i (Tag () (D' Tay (u) — D) dx dt
{lu—yr|<k}

= &i (W)D' Ty (u — V) dx dt. (4.67)
or

By combining (4.60)—(4.66), we deduce that

fg(ﬂk(u(T) —y(T))dx — /prk(uo — v (0)dx

+/ W e — ) dx d
or at

N
+Z/ ai(x,t,Vu) D' Ty(u — ) dx dt
i=1ver

+/ glx,t,u, Vu)Tp(u — ) dx dt
Or

+/ d(x,t)|u|p°72u Ti(u — ) dx dt < fTi(u — ) dx dt
or or

N
+> | @D Te(u — ) dx dt.
1701

This concludes our proof.
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5 Appendix
Lemma5.1 The operator B, = A + G, is pseudo-monotone acted from

LI;(O, T; Wol’ﬁ(Q)) into LY (0, T; W=1-P(Q)). Moreover, B, is coercive in the
following sense
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fOT(an, v) dt

—> +00 as
10l o, wi 7 )

> 17-’
1Vl 50wty — F00 Jor v e LPQO.T: Wy P ().

Proof Using the Holder’s inequality and the growth condition (1.2) we can show that
the operator A is bounded, and by using (4.3), we conclude that B, is bounded. For

the coercivity, we have for any u € L’;(O, T; W&’p(Q)),
T T T
/ (Byu,u)dt = / (Au, u) dt + / (Gpu, u)dt
0 0 0
N .
:Z/ a;(x,t,Vu) D'u dx dt
i=170r

—i—/ d(x,t)|u|‘"°dxdt+/ gn(x,t,u, Vu)u dx dt
or or

N
+Z/ én(u) D'u dx dt
i=17Y9r
or

N

ZaZ/ |Dfu|1’idxdr+dof lu|P° dx dt
i=1 QT
N

=2 (L)

i=1

L oy 1P e o)

N
i P
= a ) (1D ullfn g,y — 1

i=1
p
o0 gy = 1) = Calul g 74 g

P
> Csllull™

. _—aN-dy—C
LP(0,T; Wy () * 0 allul

LPO,T; Wy P (@)’
which implies that

J) (B, u) dr

el

—> 400 as |ul +00.

- = LiO.Twi )
LP(0.T: Wy’ (Q))

It remains toqshow that B, is pseudo-monotone. Let (ux)x be a sequence in
LP(0, T; Wy (%)) such that

we—u in LP0,T; W' (),

Buug—xn in LP (0, T; W=1P'(Q)), (5.1
lim sup(Bpuk, ux) < (xu, u).
k—00
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We prove that
Xn = Byu and  (Buup,ur) — (xn,u) as k — 4o0.

Using the compact embedding (2.5), we have u; — u in L'(Qr) fora subsequence
still denoted (uy)x .

We also have (uy); is a bounded sequence in LF’(O, T; Wol’ﬁ(Q)), then by the
growth condition (a;(x, t, Vuy))x is bounded in LPi (Q7). Therefore, there exists a
function ©%; € L?i(Qr) such that

a;i(x,t,Vup)—9; in LPi(Qr) for i=1,...,N, (5.2)
and
g |70 2ug — [ul™"2u in LPO(Qr). (5.3)

Similarly, we have (g, (x, t, ux, Vug))i is bounded in LE/(QT), then there exists a
function ¥, € L2 (Qr) such that

gn(x, 1, ug, V)=, in LY (Qr) as k — oo, (5.4)

and since ¢;, = ¢; o T, is a bounded continuous function, using the Lebesgue
dominated convergence theorem, and since 7, (ux) — T,(u) a.ein Qr, then we get

Gin(ur) — ¢in(u) for i=1,...,N. (5.5)
On one hand, we have

(Xn,v) = lim (Bjug, v)
k—o00
N
= lim Z/ ai(x,t,Vuy) D'vdx dt + klim gn(x, t, ug, Vup)v dx dt
or

k—o00 P -0 Jor

N
+ lim d(x, Dlug|P 2upv dx dt + lim Z[ Gin(up) D'vdx dt
k~>ooi:1 or

k— 00 or

(5.6)

N
:Z/ O D"vdxdt+/ wnvdxdt—i-/ d(x, H)|u|P2uv dx dt
i=1 QT QT

or

N
+> | ¢in(w) D'vdxar,
i—1Y0r
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forallv € Lﬁ(O, T; Wol”;(Q)). By using (5.1) and (5.6), we obtain

lim sup(B,, (ux), ur)
k—o00

N
= lim sup { Zf a;(x,t,Vuy) Diuk dx dt + / gn(x, t, uk, Vur)uy dx dt
k—o00 i=1 T QT

N
+/ d(x, t)|ug|P dxdt—l—Z/ &i (ug) D"ukdxdr}
or i—1 7 Or

N
52/ Vi Diudx dt +
or

Yu dx dt—l—/ d(x,t)|u|P dx dt
i=1

or or

N
+ Z/ Gin(u) D'udx dr. (5.7)
i=170r
Thanks to (5.4) and (5.5), we have

/ gn(x,t,ur, Vup)ur dx dt — Ypudx dt and
or or

/(])i(uk)Diukdxdt—) ¢i(u) D'udxdt. (5.8)
or or

Therefore

ai(x,t, Vuy) D'uy dx dt—i—/ d(x,t)|ug|P° dx dt}

k—oc0 i=1 or or (5 9)
< Z/ 9 D'u dx dt +/ d(x, )|ul” dx dt.
i=1 or or
On the other hand, using (1.4) we have
N . .
Z (a;(x,t, Vup) — a; (x, t, Vu))(D'uy — D'u) dx dt
—' Jor (5.10)
+ f d(x, ) (g |7y — |u)P~2u) (uy — wydx dt > 0,
or
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which gives
N .
Z/ a;(x, t, Vug) D’ukdxdt+/ d(x, t)|ug|P°dx dt
i=1 QT QT

N
> Z/ a;(x,t, Vug) D'u dx dt+/ d(x, O)ug)P 2ugu dx dt
i=1 QT QT

N
+ 2/ a;(x,1t, Vu)(Diuk — Diu) dx dt
17071
—i—/ d(x, DuP > u(ug — u) dx dt.
or

In view of (5.2) and (5.3), we get

N
liminf{Z/ ai(x. 1, Vuy) Diug dx dt+/ d(x, O)|ug|P° dx dt]
i—1Y09r or

k— 00

N
> Z/ % D'u dx dt—}—/ d(x,1)|ul?° dx dt.
i=1 Or Oor

This implies, thanks to (5.9), that

N
lim {Z/ ai (x,t, Vuy) D uy dx dt+f
k— 00 0 or

or

dCx, Dug | dx dt}
1 (5.11)
:Z/ ¥ D'udx dt—i—/ d(x, t)|ulP° dx dt.

i=1 or or

Using (5.8), we conclude that (Bjuy, ux) — (xn,u) as k — +o00.
Now, by (5.11) we have

k——+o00

N
lim {Z/ (@i (x. 1, Vug) — a; (x, £, Vu))(D'ug — Diu) dx dr
i=170r

+do/ (ur) P2y — )P0 2u) (ug — u)dx dt} =0.
or

In view of Lemma 3.3, we get
we — u in LP(O,T; Wo'P(Q)) then D'uy —> D'u ae in Qr.
It follows that
a;(x,t, Vugy)—a;(x,t, Vu) in Lpt{(QT),
£\ Springer
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and
gn(x, 1, ug, Vug)—gn(x.1,u, Vu) in  LP(Qr).

We deduce that x, = B,u, which completes the proof of Lemma 5.1. O

Proof of the convergence (4.56).

Let & > 0 and n, m large enough, we have

[ @) = 10 ) DTty =)
< |6 (T () — i (T (um))| 1D Ty (un) — D Ty ()| dx dt

[un | <hIN{um| <h}
+/ |¢i,n(“n) - ¢i,m(um)| |Diun - Dium|-X{\un—um|§1} dx dt.
{lun|>h I {um|>h}

(5.12)
Regarding the first term on the right-hand side of (5.12), since D' T}, (,,) and D' Ty, (u,,)

converge strongly to D' T, (u) in LPi(Q7), and since |¢; (T),(un)) — ¢; (Th ()| is
bounded in LPE(QT), then

/ |i (Th (un))
{uen| <PY0 ] <h)

—i (Ty (um))| | D Ty (un) — D' Tjy(up)| dx dt —> 0 as m,n —> oo.
(5.13)

Concerning the second term, we have ¢; ,(-) is a continuous function, then there
exists M1 > 0 suchthat sup |¢; ,(s) — @i n(r)| < M;. Also, it’s clear that

|[r—s|<1

Vse R and VM >0 wehave |[¢; (s) — pim(s)| < M
for n,m > no(s, M>).

Taking n and m large enough, by using (4.12), (4.24) and Young’s inequality, we obtain
/ |¢i,n(un) - ¢i,m(um)| |Diun - DiuYﬂl'X{\un—umKl} dx dt
{lun| >R} Jum|>h}
=/ 1910 00n) = B )| Ky i<ty dx
{lun1>h}{Jum|>h}
+f 911 tm) = B )| Ky i<ty dx
{lun|>h U{lum|>h}
+ 2/ |D'u, — Diumlp".x{|un_um|§1} dx dt
{lun =1} {lum|>h}
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< (M!' + MEmeas ({Jual > B} U (lu| > h)

+2Pi/ |D'uy |7 dx dt
{lun |>h—130{|up | =1 <|um| <|un|+1}

4 2P / |D'uy|Pdx dt — 0 as h — oo.
{lm [>h =130 [ =1 <|un|<|um|+1}
(5.14)

Thus, by combining (5.12)—(5.14), we get

/S/ (0 (n) — im ) D' Ty (g — up) dx dt —> 0 as  n,m — oo.
0 Ja
(5.15)
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